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The present paper develops the renormalization-group techniques to analyze the phase transition be-
tween the smectic-4; and smectic- 4, phases of liquid crystals. This transition exhibits a bicritical or a
tetracritical point, depending upon the number of components (n) of the order parameter. For n <3 an
isotropic or Heisenberg fixed point dominates and gives bicritical behavior. However, for n >4 a new
fixed point, with irrational € expansion coefficients, becomes stable and describes tetracritical behavior.
The critical exponents are calculated to first order in €.

PACS number(s): 64.70.Md, 42.70.Df, 64.60.Ak, 64.60.Kw

INTRODUCTION

In the smectic-4 (Sm-A) phase of liquid crystals [1]
oriented barlike molecules of length L segregate into
stacks of structureless two-dimensional planes. It is now
clear that there are several types of Sm-A4 phases [2,3]
characterized by the ratio of the interplanar spacing d to
L. The conventional Sm-A4 phases have been classified
according to the periodicity. When it corresponds to the
molecular length L, the phase is called a monolayer or
Sm-A4, (A4,) phase, and when the periodicity corre-
sponds to twice the molecular length, 2L, the phase is
called a bilayer or Sm-A4, (A4,) phase. There are
numerous ‘‘conventional” examples of both monolayer
and bilayer smectic systems that undergo continuous, or
second-order, transitions between the nematic (N) and
Sm-A phases for which the critical density fluctuations
exhibit only a single wave vector corresponding to either
the monolayer or bilayer periodicity. Again a new class
of polar liquid crystal molecules has been discovered,
which exhibit a variety of new smectic phases including
polar monolayer and bilayer phases and a Sm-A4, (A4,;)
phase with a periodicity d intermediate between the
monolayer and bilayer periodicity; L <d <2L. These re-
markable polar Sm-A phases melt into polar nematic
phases which exhibit two simultaneous fluctuations with
commensurate d;=2d,. In this paper I shall be con-
cerned with the A4,- A transition.

Sm- 4 polymorphism has been successfully explained in
terms of a phenomenological model [4-7]. In the paper
of Barois, Prost, and Lubensky [8] this model was used in
the framework of mean-field theory to evaluate different
types of phase diagrams. They predicted that a bicritical
point exists in the phase diagram, where the second-order
(N,-A,) and (N_-A4,;) phase boundaries meet a first-
order A;-A; line. Here N, represents the reentrant
nematic phase. This is directly analogous to the magnet-
ic bicritical point. However, when the effect of fluctua-
tions is considered in the theory, the existence of such a
bicritical point becomes questionable. It has been argued
[8] that since both 4; and A4, phases have the same sym-
metry the N .-A,; and N,.- A, transitions should both be-
long to the same universality class [9]. Further
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renormalization-group calculations show [10] that under
such circumstances the resulting multicritical point
should be a tetracritical point and not a bicritical point.

Furthermore, experimentally the 4,-N_.-A4, point has
been observed in the temperature-concentration diagram
of binary liquid crystal systems [11,2]. Again, a high
resolution phase diagram for DBZONO,+DB,,ONO,
mixtures [12] [DBgONO, is 4-n-octyloxyphenyl-4'-(4"'-
nitrobenzolyloxy) benzoate and DB,;ONO, is 4-n-
decyloxyphenyl-4'-(4''-nitrobenzoyloxy) benzoate] shows
that the topology near the A,-N,-A,; point does not
conform to the expected bicritical or tetracritical point.

Indeed, it seems likely that the full classification of
multicritical points will, like the classification of knots,
remain an esoteric and largely unsolved problem for some
time. For the present it thus seems reasonable to proceed
in a more frankly ad hoc fashion and investigate various
multicritical points as they come to hand in significant
contexts. Multicritical points can be defined phenomeno-
logically as points of sudden change of behavior on a line
of critical points (i.e., a second-order transition line). A
step in this direction was taken by Liu and Fisher [13]
who presented a phenomenological analysis of the mul-
ticritical points resulting from the competition between
two distinct types of ordering.

When the interaction is isotropic, the Hamiltonian of
ferromagnets may be described by the Heisenberg model

H=—J 3 (S;'8;) . 6]
(ij)

Real crystals never obey the idealized Hamiltonian (1).
The coupling to the lattice degrees of freedom usually
breaks the rotational symmetry, and generates easy axes
along which the spins align. For example, a spatial uni-
axial anisotropy of the lattice may generate, via the spin-
orbit coupling, a uniaxial anisotropy in the spins, via sin-
gle ion terms like

BH,=38 3 {(S)?—3[(SFP+(SPP]} 2)

Similar terms may be generated experimentally by the ap-
plication of uniaxial stress (proportional to g). For g <0,
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the Hamiltonian (2) has preferential ordering of the spins
along the z axis. For g >0, the preferential ordering is in
the XY planes. At low temperatures, this competition
yields a first-order “spin flop” transition at g =0, at
which the magnetization rotates discontinuously by 90°.
The complete T-g phase diagram is thus expected to have
the qualitative shape shown in Fig. 1; the ordering is
along the z axis for g <0 and in the XY plane for g > 0.
For large |g|, the fluctuations in the transverse XY plane
(when g <0) are expected to be negligible. The transition
for g <0 is thus expected to exhibit critical properties
characteristic for the Ising (n» =1) model. Similarly, the
transition for g > 0 is expected to exhibit XY (n =2) criti-
cal behavior. The point at which these two lines meet, at
g =0, is called a bicritical point [14,15]. So a bicritical
point may be characterized as the meeting of two
separate critical lines corresponding to two distinct order
parameters. It is only at this point that one expects to
observe the critical behavior of the ‘“‘true” Heisenberg
(n =3) model Eq. (1).

In addition to the (quadratic) uniaxial anisotropy (2),
real systems usually also have higher order symmetry
breaking interactions. In cubic systems, one expects the
single ion cubic Hamiltonian

n
BH,=v3 3 (SH*. (3)
i a=1
Such a term has preferential ordering of the spins along
cubic axes (e.g., [100]) if v <0, and along cubic diagonals
(e.g., [111] if v > 0.

When both the uniaxial anisotropy, Eq. (2), and the cu-
bic one, Eq. (3), arise simultaneously, competition be-
tween them may occur. Indeed, when v >0 then Eq. (3)
prefers ordering along diagonals while Eq. (2) prefers or-
dering along axes. The resulting phase diagram is shown
in Fig. 2: the flop line is now replaced by two second-
order lines, and the multicritical point is now called a
“tetracritical point” [16]. In particular, at tetracritical
points four critical lines meet. In fact, one may show
that the tetracritical and the bicritical point are the same
point, when viewed in a larger parameter space [17].

In the present paper I have used the renormalization-
group technique to investigate these multicritical points
of the 4 ,-A, phase transition. I find that bicriticality is
attained only at an isolated fixed point. All the exponents
associated with this fixed on it are just those of the usual
n-isotropic, Heisenberg model. I find that within the
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FIG. 1. Bicritical point. The solid line is the first-order tran-
sition line and the dashed lines are second-order transition lines.
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FIG. 2. Tetracritical point. The dashed lines are second-
order transition lines.

scaling regime tetracritical behavior should not be realiz-
able for n <n*(d).

THEORY

In the smectic-4 phase, the center-of-mass density p
can be expanded in a Fourier series of period d, the inter-
planar spacing,

p=pot 2 pncos[n(qoyrt+i)]

n>0

=po+1 3 (preme™ O tc.c.) . @)

n>0

qo is a vector of magnitude g,=27/d normal to the
smectic phase and 3 is a phase shift which specifies the
coordinate-system ordering. One parameter representing
unambiguously the vectorial symmetry of molecules is,
for example,

P(r)=%2Pi8(r—ri), 5)

where the summation is performed inside the volume v
and P; is the dipole of molecule i. This parameter de-
scribes the antiferroelectric order which tends to con-
dense at the wavelength of molecular pairs [4]. In most
of the following, one can make the simplifying choice of
potential where, in the absence of charges, P is derived as
order parameter:

P(r)=-Lv4 . (©)
41

The mass density, of course, is a relevant order parame-
ter, assuming that it tends to condense at a wavelength
corresponding to the molecular length. Hence a good
choice of order parameters would be

¢=(ps—pp)/2, p=(p+tpp)/2, ™

in which one can distinguish part 4 from part B in the
molecule (say, head and tail) and p 4 and py, respectively,
are the densities of parts 4 and B. Again, p can be as-
sumed to condense at the molecular length; ¢ describes
the segregation between heads and tails and thus can be
assumed to condense at the pair length. ¢ will be called
the antiferroelectric order parameter in what follows.

The simplest model free energy F capable of describing
the nematic (N), Sm- 4 |, and Sm- 4, phases is a function-
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al field of the fields p and ¢ only, where p and ¢ are the
order parameters of the Sm-4,; and Sm-A4, phases. In
general, of course, all p,, and ¢, are needed, but they can
be expressed as functions of p and ¢. The free energy
must be invariant under uniform translations of the sys-
tem. Mean-field diagrams involving A,;-N_.-A, points
do not exhibit reentrant behavior but they do show that
reentrant terms of the free energy near that point are typ-
ical of two order parameters coupled only at fourth order

(71,
F= [d9X[1 4,02+ L(VpP+LA,¢*+L(V$)
+1B,p*+1By¢*+ 1B 4p’¢’] . (8)
Such a free energy has been extensively studied in d di-
mensions, p and ¢ being considered as vectorial order pa-

rameters with n components. In the smectic case, p and
¢ are two-component order parameters

¢OCOS¢¢
dosiny,

where, ¢, and ¢, are the phases, p and ¢ are the mono-
layer and partial bilayer order parameters, and

,=a,(T—T,) , (10)
Ay=a,(T—T,). (an

pocost,

posiny,

p= = , 9

’

The quartic coefficients B 0’ B # and B o are positive,
varying slowly with temperature, and @, and a4 are posi-
tive constants. T is the temperature and T, is the mean-
field N-A; and N-A4, transition temperature. The equa-
tions neglect the coupling with the director fluctuation.
The free energy of Eq. (8) has been used to study the
N,-A;, N,.-A4,;, and A,;-A, transitions theoretically
[4-7]. A renormalization-group analysis can be applied
directly to this model to study the 4 -4, transition.

Hand-waving arguments [5] suggest that reentrance
may occur when 4,~A4,<0 but A4,+B,,(¢*) and
Ay +B,4(p’) are greater than zero. In other words,
reentrance is induced by the fluctuations of the coupling
order parameters. Solutions for quasi-one-dimensional
Ising system involving the transfer integral technique [3]
and the harmonic approximation for the coupled XY pa-
rameters [6], together with an exact solution of the n =«
case do reveal a reentrant behavior connected to the
coexistence of a multicritical point (bicritical or tetracrit-
ical). The general argument can be cast in a simple form
for any n and 2 <d <4. The experimental values of n in
the case of the 4,- A4, transition is n =2.

Assuming finite anisotropy, a different analysis is need-
ed in the bicritical region where 4,== 44 and also assum-
ing Ap, A¢, Bp, B¢, and Bp¢ are all of order e=4—d. In
this paper I present the results of an analysis of this mod-
el (8) based on Wilson’s renormalization-group approach
[18,19] for d =4—¢ and arbitrary n. We start from
Wilson’s recursion formula [20]

Ok +1(Z)=—b%m[Ix(b'"9%Z)/Ix(0)], (12)

I (Z)= f_+:dy1 e f_lwdynexp[——yz—%QK(Y%—Z)

— 10k (=Y +2)].
(13)

The recursion relations are readily constructed to the
leading order [18,21] and found to be

A,=b*[A4,+3fB,+f(n—1)B,,

—3gB,A,—g(n —1)B,,4,], (14)
Ay=b*A,+f(n+1)By+[B,,
—g(n+1)BsA;—gB,,A,], (15)
B,=b*[B,—9gB)—g(n —1)B},], (16)
By=b*[B,—g(n+7)B;—gB},], an
B,;=b°B,,[1—3gB,—g(n+1)B,—4gB,,], (18)
where
FB)=AXb"2—1)/87", (19)
g(b)=Inb /87*A" (20)

arise from the usual Feynman type integrals over the
outer momentum shell with cutoff A evaluated as d —4.
Here the prime denotes the superscript (k +1), while on
the right-hand side the superscript (k) has been dropped.
To investigate the stability of the solutions obtained it is
necessary to find the eigenvalues of the determinant of
the linearized system of Eqs. (14)—(18). Here b is the
momentum cutoff reduction factor (b > 1).

It is evident from the above recursion relations that for
any value of n(>0) the last three of these equations
determine six fixed points. They are

B}y=0, B;=0, B;=0, (21a)
B}=0, B}=0, B}=16m"A%/9, (21b)
B}=0, Bj;=16r"A%/(n+7), B;=0, 21c)
B},=0, Bj;=161"A%/(n+7), B})=167"A%/9,
21d)
B} =B} =B}, =8mA%/(n +8),
with
AY=Ay=—4r"A%(n+2)/(n+8), (21e)
and
B} ={1+[1-9(n —1)x?]'*}47’A% /9 ,
Bi={1+[1—(n +7)x212)47*A%e /(n +7) ,
By =41 A%x , 210
AX=[3fB}+(n—1)fB},1/(b7>—1),
Ay =[(n+1)fBs+fB}]1/(b"2—1),
where x is the real root of the cubic equation
px3—gx?+rx+s=0 (22)
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with A
p=9(4n*+29n +88), ¢=6(2n2+28n+179),
r=(n%*+5n+472), and s=6(n —11) .

DISCUSSION WITH RESULTS

Now the fixed point (21a) is trivial, always unstable,
and a Gaussian-Gaussian point. The fixed point (21b) is
an Ising-Gaussian point. The fixed point (21c) is a Gauss-
ian (n —1) Heisenberg point and the fixed point (21d) is a
decoupled Ising (n —1) Heisenberg fixed point. For
n <11+ 0(g) all the fixed points from Eqgs. (21a)-(21d)
are found to be unstable to the B, perturbation. The
various crossover exponents associated with these in-
plane flows are all of order €. Calculating the
renormalization-group eigenvalues corresponding to per-
turbations which take the system out of B;¢ =0 leads to
the eigenvalues

_2¢ __6e _(1—nje
377 a4+7 7Y 3n+7)

where we have written the b-de}?endent renormalization
eigenvalues A _ (b) as A _,=b™M?. The first three fixed
points are evidently unstable to B,;-type perturbations
for all n> —8. The fixed point (21d), however, is only
unstable when

n<11+0(e) . (24)

AM=e, A (23)

If this inequality is reversed, the fixed point becomes
completely stable and terminates the critical surface.
Since the system will then spontaneously break into n
Heisenberg essentially independent systems, a single scal-
ing function cannot properly describe the asymptotic free
energy when the values of n of Sm- 4, and Sm- 4 transi-
tions are different.

The fixed point (21e) is an isotropic #» Heisenberg point.
As the interaction parameters B 07 B @ and Bp¢ at this
fixed point satisfy the mean-field theory criterion for bi-
critical behavior [13], (B, )ZZB;B; , we conclude that
this fixed point describes a bicritical point. Linearizing
about this fixed point in (Bp,B¢,B P¢) space, we find the
three eigenvalues

8¢ ,=(n—4)s
n+8 " " (n+8)

correct to order € [21,22]. This fixed point is fully stable
and hence determines the critical behavior for

n=4+0(e) . (26)

A=—c, AM=— (25)

Now using the eigenvalues A} obtained to O (e3) by Ket-
ley and Wallace [23], one can find that this fixed point
remains stable in the full (B, B, B ,,) subspace for

n<n*(d)=4—2c+c*e?+0(c®) ,

where ¢*=3[6£(3)—1] takes the same form as in [13].
Now for d =3 this yields n*(3)~3.128. Thus in three
dimensions one still expects the Heisenberg fixed point to
dominate for n < 3.
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What transpires from the above analysis that both 4,
and A, are specified at the fixed point indicates that bi-
criticality is attained only at isolated points. All the ex-
ponents associated with this fixed point are just those of
the usual n-isotropic, Heisenberg model.

The value of the critical exponent ¥ of the susceptibili-
ty may be obtained in the usual way as

(n+2)
=l4+e——"+. 2
TPy @7
The crossover index is given by [24]
n
=l+e—-. 8
R TPy @8

Now the fixed point of Eq. (21f) becomes stable and
determines critical behavior for n*(d)<n <11+0(¢).
In order to obtain the eigenvalues and also the critical ex-
ponents, the root of Eq. (22) is necessary. Although the
appropriate root of this equation is rational at n =11
(x=0),n=4(x=¢),n=2(x=%),andat n =1 and —1
the root is an irrational function of n. For n =5, we have

x={82—[a+b(82)2]V3—[a—b(82)1/2]'/3} /333 ,

where a =18728 and b =1998.

The renormalization-group eigenvalues, and hence the
critical point exponents, can be calculated to order ¢
through (14)-(18) and again have irrational coefficients.
To order ¢ this yields

AM=2+4(—3B; —(n +1)B} +{[3B} —(n+1)B}
+4(n —1)(B% 1},
29)

A =2+1(—=3B} —(n+ 1B} +{[3B} —(n +1)B} I
+4(n —1)(B})*}'?) .

From these relations the thermodynamic exponents can
be calculated using the standard expression [25-27]

2—a=dv=d/A{ (30)
while the crossover exponent is given by [25-27]

D=Ly /A} . (31)
The gap exponent A entering the free energy scaling rela-
tion [28] is related to 7 by

A,=3d+2—m,)v, Ay=3d+2—muv, (32)
and similarly the susceptibility exponents

Ypo=2=m,v, v4=Q2—myv. (33)

It is in fact possible to determine the tetracritical ex-
ponents 7, and 714 to leading order by straightforward
techniques [25-27]. The inequality of the fixed point
values of A7 and A3 as evidenced by (21f) leads to dis-
tinct exponents 7, and 7,. To order g2 these are given by

7,=8[3B}> +(n —1)B}21+0(e%) , 34

7,=8[(n +1)B}>+B32]1+0(e’) , (35)
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where only the fixed point values (29) of B ;‘,‘, B ; ,and B ;,‘¢
to O (&) are needed.

In the region of stability, it can be easily shown that
0=B}, <32w’A%/(n+8), while B} and B} exceed
3272A%e /(n +8). On further increase of n the solution
(21f) also becomes unstable. Accordingly this fixed point
then satisfies the condition (BJ, )? <B;Bj which
represents the phenomenological criterion [13] for tetra-
criticality, i.e., a new intermediate phase exists with both
Sm-A4,; and Sm-A4, order simultaneously present. The
condition of bicriticality [13], namely, (B};)*>B3B}, is
satisfied at the Heisenberg critical point so that, within
the scaling regime, tetracritical behavior should not be
realizable for n <n*(d).

When n >4, the intersection point will be tetracritical,
i.e., an intermediate phase arises. This intermediate
phase is the Sm-A4,; phase. However, I must distinguish
two cases.

For (n —8)(n +16)>n? there is an uncoupled tetra-
critical fixed point. In this case the susceptibility and the
crossover exponents are

n+1
2(n +7)
That is, the system at an “‘uncoupled” tetracritical point

behaves like two noninteracting subsystems and the tran-
sition lines intersect at this point at an angle (p=¢=1).

Yp=1+e/6, y4=1+ €, and ®=1. (36)

When 4<n<8+(n—2)*/(n+16), then B};>0,
p>1,6>1, and the transition lines are tangent to each
other at the tetracritical point. The exponents also turn
out to be different [29].

CONCLUSION

In conclusion, the present analysis clearly indicates
that the critical exponents observed in these 4;- A4 tran-
sitions provide theoretical support to the experimental
observation. In order to gain insight into this phase tran-
sition continued experimental and theoretical work on
the A;-A, transition is needed. The latent heat of the
Agz- A, transition should vanish at the bicritical point.
The present model also indicated the various critical ex-
ponents of this transition, which was an open problem.
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